Programming for Robotics
Introduction to ROS

Course 1

Péter Fankhauser, Dominic Jud, Martin Wermelinger
Prof. Dr. Marco Hutter

} 4 Péter Fankhauser | 20.02.2017 | 1

Overview
= Course 1 = Course 3 = Course 5
= ROS architecture & philosophy = TF Transformation System = Case study
= ROS master, nodes, and topics = rqgt User Interface
= Console commands = Robot models (URDF)
= Catkin workspace and build system = Simulation descriptions (SDF)

= Launch-files
= (Gazebo simulator

= Course 2 = Course4
= ROS package structure = ROS services
= |ntegration and programming with Eclipse = ROS actions (actionlib)
= ROS C++ client library (roscpp) = ROS time
= ROS subscribers and publishers = ROS bags

= ROS parameter server
= RViz visualization

4' ?SI_ Péter Fankhauser | 20.02.2017 | 2

Robotic Systems Lab

Course Structure

Course 1 Course 2 Course 3 Course 4 Course 5

Deadline for Ex. 4.

Deadline for Ex. 2.

Deadline for Ex. 3.

Deadline for Ex. 1.

Lecture 1

Lecture 2 Lecture 3 Lecture 4 Case Study

Exercise 1 Intro.

Exercise 5 Intro.

Exercise 2 Intro. Exercise 3 Intro. Exercise 4 Intro.

_ . _ Exercise 5
Exercise 2 Exercise 3 Exercise 4

Deadline for Ex. 5.

‘ Péter Fankhauser | 20.02.2017 | 3
A Robotic Systems Lab

Exercise Evaluation

= Each exercise has several check questions
= Each exercise counts for 20% of the final grade

= We encourage team work, but every student has the show the results on his
own PC and is evaluated individually

= Exercises are check by the teaching assistants when you are read, but latest the
following course day in the morning (08:15-08:45, except for exercise 5)

= Let the teaching assistant know once you are reading to present your results
= The lectures start at 08:45

}4 QSI Péter Fankhauser | 20.02.2017 | 4
A Robotic Systems Lab

Overview Course 1

= ROS architecture & philosophy

= ROS master, nodes, and topics

= Console commands

= (Catkin workspace and build system
= Launch-files

= (Gazebo simulator

>.<m Péter Fankhauser | 20.02.2017 | 5
Roboti

obotic Systems Lab

What is ROS?

ROS = Robot Operating System

+ ii.'f‘u
.. -..,— ros.org
Plumbing Tools Capabilities Ecosystem
= Process = Simulation = Control = Package organization
management = Visualization = Planning = Software distribution
- Inter-propes§ = Graphical user = Perception = Documentation
communication interface = Mapping = Tutorials
= Device drivers = Data |Ogg|ng . ManipUIation

><?SL Péter Fankhauser | 20.02.2017 | 6

Robotic Systems Lab

History of ROS

= QOriginally developed in 2007 at the
Stanford Artificial Intelligence
Laboratory

= Since 2013 managed by OSRF

= Today used by many robots,
universities and companies

= De facto standard for robot
programming

ros.org

>‘<E— Péter Fankhauser | 20.02.2017 | 7

Robotic Systems Lab

ROS Philosophy

L{3SL

Peer to peer
Individual programs communicate over defined APl (ROS messages, services, etc.).

Distributed
Programs can be run on multiple computers and communicate over the network.

Multi-lingual
ROS modules can be written in any language for which a client library exists (C++, Python,
MATLAB, Java, etc.).

Light-weight
Stand-alone libraries are wrapped around with a thin ROS layer.

Free and open-source
Most ROS software is open-source and free to use.

Péter Fankhauser | 20.02.2017 | 8

ROS Workspace Environment

= Defines context for the current workspace This is
= Default workspace loaded with alre?dy
setup in the
> source /opt/ros/indigo/setup.bash provided

installation.

Overlay your catkin workspace with

> c¢d ~/catkin_ws See setup with

> source devel/setup.bash > cat ~/.bashrc

Check your workspace with

> echo $ROS PACKAGE_PATH
More info

http://wiki.ros.org/indigo/Installation/Ubuntu
http://wiki.ros.org/catkin/workspaces

'4?5'_ Péter Fankhauser | 20.02.2017 | 9

Robotic Systems Lab

ROS Master

= Manages the communication between nodes ROS Master

Every node registers at startup with the
master

Start a master with

> roscore

More info
http://wiki.ros.org/Master

LY SL

Péter Fankhauser | 20.02.2017 | 10
Robotic Systems Lab

ROS Nodes

ROS Master

= Single-purpose, executable program

= Individually compiled, executed, and
managed

= Qrganized in packages

Registration Registration

Run a node with

> rosrun package_name node_name

See active nodes with

> rosnode list

Retrieve information about a node with
More info

> rosnode info node name http://wiki.ros.org/rosnode

'4?5'_ Péter Fankhauser | 20.02.2017 | 11

Robotic Systems Lab

ROS Topics

= Nodes communicate over topics ROS Master
= Nodes can publish or subscribe to a topic j
= Typically, 1 publisher and n subscribers Registration | | Registration
. \. Informs about
= Topic is a name for a stream of messages | connection

\

1

’
/

‘l

Node 1 Messages S Node 2
]])) Publisher Subscriber
List active topics with
> rostopic list Publish . Subscribe I
Subscribe and print the contents of a topic with "_topic _ >
Subscribe

> rostopic echo /topic

Show information about a topic with
More info
http://wiki.ros.org/rostopic

'4?5'_ Péter Fankhauser | 20.02.2017 | 12

Robotic Systems Lab

> rostopic info /topic

ROS Messages

= Data structure defining the type of a topic

= Compromised of a nested structure of
integers, floats, booleans, strings etc. and
arrays of objects

= Defined in *.msg files

See the type of a topic
> rostopic type /topic

Publish a message to a topic
> rostopic pub /topic type args

LY SL

Robotic Systems Lab

ROS Master

Registration Registration

Node 1 Node 2
Publisher Subscriber
Publish : Subscribe I
* topic .
Subscribe
* msg Message definition

int number
double width

string description More info
otc http://wiki.ros.org/Messages
Péter Fankhauser | 20.02.2017 | 13

ROS Messages
Pose Stamped Example

geometry msqs/PoseStamped.msq

geometry msqs/Point.msq

std_msgs/Header header
ﬁ%angQ X uint32 seq
float64 y time stamp
04 Z string frame_id

geometry msgs/Pose pose
> geometry msgs/Point position

n _ float64 x
sensor_msgs/Image.msq Floated y
std _msgs/Header header float64d z

uint32 seq geometry msgs/Quaternion

time stamp orientation

string frame_id float64 x
uint32 height float64d y
uint32 width float64d z
string encoding float6d w
uint8 is bigendian
uint32 step
uint8[] data

}4& Péter Fankhauser | 20.02.2017 | 14

Robotic Systems Lab

Example
Console Tab Nr. 1 — Starting a roscore

student@ubuntu:~/c S
1oggA|g to ‘ tudent/.ros/log/6cl1852aa-e961-11e6-8543-000c297
. lat :1~JDJWT
Start a roscore W|th C g log for disk usage. This may take awhile.

> roscore Domzmeﬂ;ﬂyum 1lcdxk‘wme.UJue;5<MB.
started roslaunch server http://ubuntu:346089/

ersion 1.11.20

indigo
1.11.20

auto-starting new master
process[master]: started with pid [6768]
ROS_MASTER_URI=http://ubuntu:11311/

setting /run_id to 6cl1852aa-e961-11e6-8543-000c297bd368
process[rosout-1]: started with pid [6721]
started core service [/rosout]

< Péter Fankhauser | 20.02.2017 | 15
Robotic Systems Lab

Example
Console Tab Nr. 2 — Starting a talker node

Run a talker demo node with

> rosrun roscpp_tutorials talker

}4_\’5L Péter Fankhauser | 20.02.2017 | 16

Robotic Systems Lab

Example
Console Tab Nr. 3 — Analyze talker node

See the list of active nodes

ws$ rosnode list

> roshode list

Show information about the talker node

> rosnode info /talker Node [/talker]
Publications:
* /chatter [std msgs/String
* /rosout [rosgraph msgs/Lo

Subscriptions: None

* /talker/get loggers
* /talker/set logger level

/catkin ws$ rostopic info

See information about the chatter topic

> rostopic info /chatter

}{?SL Péter Fankhauser | 20.02.2017 | 17

Robotic Systems Lab

Example
Console Tab Nr. 3 — Analyze chatter topic

Check the type of the chatter topic
> rostopic type /chatter

Show the message contents of the topic student@ubuntu: ~/c:
data: hello world
> rostopic echo /chatter e hello world

data: hello world

Analyze the frequency

> rostopic hz /chatter R —

Xx: 0.101s std dev: 0.00069s window: 20

L{SL

Péter Fankhauser | 20.02.2017 | 18
Robotic Systems Lab

Example
Console Tab Nr. 4 — Starting a listener node

Run a listener demo node with

> rosrun roscpp_tutorials listener

}4& Péter Fankhauser | 20.02.2017 | 19

Robotic Systems Lab

Example
Console Tab Nr. 3 — Analyze

See the new listener node with

> rosnode list

Show the connection of the nodes over the
chatter topic with

> rostopic info /chatter

* /listener (http://ubuntu:34664/)

}'<_\’SL Péter Fankhauser | 20.02.2017 | 20

Robotic Systems Lab

Example
Console Tab Nr. 3 — Publish Message from Console

Close the talker node in console nr. 2 with Ctrl + C
Publish your own message with

> rostopic pub /chatter std msgs/String
"data: 'ETH Zurich ROS Course'"

Check the output of the listener in console nr. 4

EYRSL

Péter Fankhauser | 20.02.2017 | 21
Robotic Systems Lab

catkin Build System

= catkin is the ROS build system to generate
executables, libraries, and interfaces

= We suggest to use the Catkin Command Line Tools

=> Use catkin build instead of catkin_make

Navigate to your catkin workspace with

> ¢d ~/catkin_ws

Build a package with

> catkin build package_name

Whenever you build a new package, update your environment

s > source devel/setup.bash

LY SL

Robotic Systems Lab

The catkin
command line
tools are pre-

installed in the
provided
installation.

More info
http://wiki.ros.org/catkin/Tutorials
https://catkin-tools.readthedocs.io/

Péter Fankhauser | 20.02.2017 | 22

catkin Build System

The catkin workspace contains the following spaces

Work here Don’t touch
Src build
The source space contains The build space is where
the source code. This is where CMake is invoked to build the
you can clone, create, and packages in the source
edit source code for the space. Cache information and
packages you want to build. other intermediate files are
kept here.

If necessary, clean the entire build and devel space with
> catkin clean

LY SL

Robotic Systems Lab

Don’t touch

-

devel

The development (devel)
space is where built targets
are placed (prior to being
installed).

More info
http://wiki.ros.org/catkin/workspaces

Péter Fankhauser | 20.02.2017 | 23

catkin Build System

The catkin workspace setup can be checked with StuCeMiGbmT: /At wss catin contte

> catkin config

For example, to set the CMake build type to Release
(or Debug etc.), use

> catkin build --cmake-args
-DCMAKE_BUILD_TYPE=Release

Already
. setup in the
More info None provided
http://catkin-tools.readthedocs.io/en/latest/verbs/catkin config.html . . . e
http://catkin-tools.readthedocs.io/en/latest/cheat sheet.html Workspace configuration appears valid. Instaflation.

K% RSL

Robotic Systems Lab

Péter Fankhauser | 20.02.2017 | 24

Example
Open a terminal and browse to your git folder https://qithub.com/ethz-asl/ros best practices
> cd ~/git
42 1 contributor sfs BSD-3-Clause
Clone the Git repository with —
N glt clone httpS.//glthUb. com/ethz— Create new file @ Upload files = Find file
asl/ros_best_practices.git Clone with HTTPS & Use SSH

. . Use Git or checkout with SVN using the web URL.
Symlink the new package to your catkin workspace

https://github.com/ethz-asl/ros_best_pract @_

. c g mplate.
> 1In -s ~/git/ros_best practices/ ~/catkin_ws/src/ °
mplate. Open in Desktop Download ZIP
mplate. 2 years ago

Note: You could also directly clone to your catkin workspace, but using a
common git folder is convenient if you have multiple catkin workspaces.

>| 4' QSI Péter Fankhauser | 20.02.2017 | 25

Robotic Systems Lab

Example

Go to your catkin workspace

> cd ~/catkin_ws

Build the package with

> catkin build ros_package template

Re-source your workspace setup

> source devel/setup.bash

Launch the node with

> roslaunch ros_package template
ros_package template.launch

L5l

Robotic Systems Lab

] Found '1
[build] Updating pa g
Starting >>> catkin_tools_prebuild

Starting >>> ros_package template

Summary: All 2 packages succeede

total.
have changed, please 1

0o: indigo

on: 1.11.20

ros package template (ros package template/ros package template)

auto-starting new master

process[master]: started with pid [27185]
ROS_MASTER_URI=http://localhost:11311

setting /run_id to e43f937a-ed52-11e6-9789-000c297hd368
process[rosout-1]: started with pid [27198]

started core service [/rosout]
process[ros_package_template-2]: started with pid [27261]

[INFO] [1486485095.843512614]: Successfully launched node.

Péter Fankhauser | 20.02.2017

ROS Launch

KAXSL

launch is a tool for launching multiple nodes
(as well as setting parameters)

Are written in XML as *./launch files

If not yet running, launch automatically starts
a roscore

Browse to the folder and start a launch file with

> roslaunch file name.launch
Start a launch file from a package with

> roslaunch package name file name.launch

More info
http://wiki.ros.org/roslaunch

Robotic Systems Lab

Example console output for
roslaunch roscpp_tutorials talker_ listener.launch

pp tutorials tal
is may take awhile.
chec % ng log file disk usage. Usage is <1GB.

started roslaunch server http://ubuntu:37592/

NODES

listener (rosc
talker (ros

auto-starting new master
process[master]: started with pid [5772]
ROS_MASTER_URI=http://localhost:11311

setting /run_id to 794321aa-e950-11e6-95db-0600c297bd368
process[rosout-1]: started with pid [5785]

started core service [/rosout]
process[listener-2]: started with pid [5788]
process|[talker- 3] started w1th pid [5795]

[INFO] [1486044252 3 -

[INFO] [
[INFO] [14
[INFO] [

1486
1486044252

Péter Fankhauser | 20.02.2017 | 27

ROS Launch
File Structure

talker listener.launch

Notice the syntax difference

<launch>
%ame;listener‘" pkg="roscpp_tutorials" type="listener" output="scrr@ -~ .)
de name="talker" pkg="roscpp tutorials" type="talker" output="scree for self closmg tags.

<tag></tag> and <tag/>

launch: Root element of the launch file

node: Each <node> tag specifies a node to be launched

name: Name of the node (free to choose)

pkg: Package containing the node

type: Type of the node, there must be a corresponding executable with the same name
output: Specifies where to output log messages (screen: console, 1log: log file)

More info
http://wiki.ros.org/roslaunch/XML

http://wiki.ros.org/roslaunch/Tutorials/Roslaunch%20tips%20for%20larger%20projects

}4& Péter Fankhauser | 20.02.2017 | 28

Robotic Systems Lab

ROS Launch
Arguments

X

Create re-usable launch files with <arg> tag,

which works like a parameter (default optional)

<arg name="arg name" default="default value"/>

Use arguments in launch file with

$(arg arg _name)

When launching, arguments can be set with

> roslaunch launch_file.launch arg _name:=value

SL

Robotic Systems Lab

range world.launch (simplified)

<?xml version="1.0"?>
<launch>
<arg name="use_sim_time" default="true"/>

<arg name="world" default="gazebo ros_range"/>
<arg name="debug" default="false"/>
<arg name="physics" default="ode"/>

<group if="$(arg use_sim_time)">

<param name="/use_sim_time" value="true" />
</group>

<include file="$(find gazebo_ros)
/launch/empty world.launch">
<arg name="world name" value="$(find gazebo plugins)/
test/test worlds/$(arg world).world"/>

<arg name="debug" value="$(arg debug)"/>
<arg name="physics" value="$(arg physics)"/>
</include>
</launch>

More info
http://wiki.ros.org/roslaunch/XML/arg

Péter Fankhauser | 20.02.2017 | 29

ROS Launch
Including Other Launch Files

= Include other launch files with <include> tag to

organize large projects —]

<include file="package name" />

= Find the system path to other packages with

range world.launch (simplified)

$(find package name)

Pass arguments to the included file |

<arg name="arg _name" value="value"/>

EYRSL

Robotic Systems Lab

<?xml version="1.0"?>
<launch>
<arg name="use_sim_time" default="true"/>
<arg name="world" default="gazebo ros_range"/>
<arg name="debug" default="false"/>
<arg name="physics" default="ode"/>

<group if="$(arg use_sim_time)">
<param name="/use_sim_time" value="true" />
</group>

<include file="$(find gazebo_ros)

/launch/empty world.launch">
<arg name="world name" value="$(find gazebo plugins)/

test/test worlds/$(arg world).world"/>
<arg name="debug" value="$(arg debug)"/>
<arg name="physics" value="$(arg physics)"/>
</include>
</launch>

More info
http://wiki.ros.org/roslaunch/XML/include

Péter Fankhauser | 20.02.2017 | 30

Gazebo Simulator

Object tree Toolbar

= Simulate 3d rigid-body dynamics o /
= Simulate a variety of sensors including noise e e
= 3d visualization and user interaction 3

= Includes a database of many robots and
environments (Gazebo worlds)

= Provides a ROS interface
= Extensible with plugins

Run Gazebo with

> rosrun gazebo ros gazebo Properties Start and pause simulation

More info
http://gazebosim.org/

http://gazebosim.org/tutorials

4' Péter Fankhauser | 20.02.2017 | 31
A Robotic Systems Lab

Further References

= ROS Wiki = ROS Cheat Sheet

= http://wiki.ros.orq/ = https://github.com/ros/cheatsheet/releases/dow
= |nstallation nload/0.0.1/ROScheatsheet_catkin.pdf

= http://wiki.ros.org/ROS/Installation = ROS Best Practices
= Tutorials = https://github.com/ethz-

asl/ros best practices/wiki

= ROS Package Template

= https://github.com/ethz-
asl/ros best practices/tree/master/ros packaqg
e template

= http://wiki.ros.org/ROS/Tutorials

= Available packages
= http://www.ros.org/browse/

}.<?SL Péter Fankhauser | 20.02.2017 | 32

Robotic Systems Lab

Contact Information

ETH Zurich Lecturers

Robotic Systems Lab Péter Fankhauser (pfankhauser@ethz.ch)
Prof. Dr. Marco Hutter Dominic Jud

LEE J 225 Martin Wermelinger

Leonhardstrasse 21

8092 Zurich Course website:

Switzerland http://www.rsl.ethz.ch/education-

students/lectures/ros.html

http://www.rsl.ethz.ch

}.4?5'_ Péter Fankhauser | 20.02.2017 | 33

Robotic Systems Lab

