ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

4

oo - l
Autonomous Systems Lab

Exercise 6
Dijkstra’s Algorithm and the Dynamic Window Approach
for Motion Planning

1 Introduction

The goal of this exercise is to implement
motion planning algorithms that enable
a robot to navigate through a partially
known environment. In order to achieve
this task, two commonly used algorithms
will be applied: Dijkstra’s algorithm for
computing a navigation function based on
a static map of the environment, and the
Dynamic Window Approach (DWA) for
online planning, taking into account both
static and dynamic obstacles. The algorithms
are described in the book “Introduction to
Autonomous Mobile Robots” (Siegwart et al.,
2011) in Chapter 6.

1.1 Dijkstra’s Algorithm

Dijkstra’s algorithm (Siegwart et al., 2011,
p-382) is a graph search algorithm that solves
the shortest-path problem by applying the
dynamic programming method. Starting
from a source vertex in the graph, a
discrete equidistant wavefront is expanded.

120

100

Figure 1: Dijkstra’s algorithm for global motion
planning in an 8-connected grid. The color of
the map refers to the distance of the respective
cell to the goal (blue: close, red: far). The blue
line is the shortest path in the grid from the start
(green dot) to the goal (red dot).

Subsequently, all vertices are labeled with their lowest cost (distance) to the source vertex (see
Fig. 1). The distance field created by Dijkstra’s algorithm is free of local minima. Hence it can be

used as a navigation function.

1.2 Dynamic Window Approach

The Dynamic Window Approach (Siegwart et al., 2011, p.402), first proposed by Fox et al.
(1997), is a robot navigation method that accounts for the kinodynamic constraints of the vehicle.
Acceleration limits are incorporated by choosing motion commands (linear and angular velocity)

Vs

\ \ 90 cm/sec

A\

90 deg/sec 90 deg/séc

Figure 2: Dynamic Window Approach

from a finite window in the velocity space, centered at the current state. Velocities that are
inevitably in collision are pruned, leaving a set of feasible velocities which form the search space.
Velocities within the dynamic window are then sampled and rated based on a custom score
function. In the original paper by Fox et al., the proposed score function

G (v, w) = aheading (v, w) 4 B dist (v, w) + 7 velocity (v, w) (1)

computes a weighted sum of a heading-term (enforcing alignment of the robot towards the goal
position), a distance term (penalizing samples resulting in motions towards obstacles) and a
velocity term (rewarding higher velocities in order to make progress towards the goal). The
optimal control input for the robot is given by the velocity sample [v, w] that maximizes the
score function G.

Local Dynamic Window Approach. The original Dynamic Window Approach is a local
planning method that does not take into account the topology of the environment. It is
vulnerable to cul-de-sac environments, as progress towards the goal is enforced only via the
definition of the heading term

heading (v, w) = |T — |A6||, ()

where A6 represents the heading offset to the goal (i.e., the angle between the robot’s heading
and the straight line to the goal).

Global Dynamic Window Approach. Brock & Khatib (1999) addressed the shortcomings of the
Dynamic Window Approach by including a global navigation function. The heading term is
modified to capture the alignment of the robot with the gradient of the navigation function. This
enables to guide the robot to the goal even in the presence of dead ends in the environment.

2 Matlab Implementation

The above mentioned algorithms will be utilized in this exercise to navigate a robot. This section
explains their implementation.

2.1 Introduction

In order to complete the implementation, you will have to fill out blanks (indicated by the T0ODO
symbol) in the provided Matlab code. There are two files at the top level folder of exercise 6 that
require modification:

e dynamicWindowApproach.m
— Implementation for the Local and Global Dynamic Window Approach
e dijkstra.m

— Implementation for Dijkstra’s algorithm

Note that all file paths in this document are given relative to the exercise’s root folder. The
comments in the code will provide you more information about what has to be implemented.
Each of them can be tested with the following scripts:

e test/testLocalDwa.m
o test/testGlobalDwa.m

o test/testDijkstra.m

The scripts
e test/testNavigationLocalDwa.m and
e test/testNavigationGlobalDwa.m

will allow you to test the navigation performance in a very simple simulation environment,
before moving on to navigating a simulated robot in V-REP with the script
vrep/vrepSimulation.m.

2.2 Exercise 6.1: Local Dynamic Window Approach

The first task of the exercise is to implement the Local Dynamic Window Approach. All necessary
modifications will take place in the file dynamicWindowApproach.m. The function

[vSolution, omegaSolution, debug] = dynamicWindowApproach(robotState,
goalPosition, localMap, parameters, globalGradientMap)

takes the current robot state robotState, the goal position goalPosition, a local map localMap
containing obstacle information from a local surround sensor and a parameter struct
parameters providing amongst others a description of the robotic platform. Optionally, the
gradient of the global navigation function globalGradientMap can be provided (which is not
relevant for the implementation of the local dynamic window approach).

The outputs are given by the optimal translational velocity vSolution in /s and rotational
velocity omegaSolution in 7#d/s. The struct debug will contain information that allows us to

check for the correctness of the algorithm’s internals.

Task: Your task is to fill out the blanks indicated by TODO (Ex. 6.1). After finishing this
task, you can check the correctness of your implementation with the script
test/testLocalDwa.m. This script will load precomputed solution values for predefined inputs
from the file test/localbwaSolution.mat and will compare your output values against them.

Cost function

cost

0.95

0.9

) 1 07 omega
velocity

Figure 3: Score function evaluated by the Dynamic Window Approach.

For easier debugging, you might want to enable plotting of internal data via the field plot in
the parameters struct. This will display the generated trajectory set as well as a plot of the score
function (see figure 3).

Validation: Once your implementation is correct, you can run the simple navigation
simulation with the script test/testNavigationLocalDwa.m. Play with the weighting factors of
the DWA score function and the start and goal locations, and observe the changes in the
behavior of the planner.

2.3 Exercise 6.2: Dijkstra’s Algorithm

You will soon notice that the Local Dynamic Window Approach runs into problems in cul-de-
sack environments. To overcome this problem, we will now implement Dijkstra’s Algorithm to
compute a minima-free navigation function later to be used in the Global Dynamic Window
Approach. All necessary modifications will take place in the file dijkstra.m. The corresponding
function dijkstra

function [costs, costGradientDirection, path] = dijkstra(map, goalldx,
parameters, startIdx)

takes a global description of the environment map, a 2D index of the goal vertex goalIdx and a
parameter struct parameters. The start vertex startIdx (in most situations the current robot
location in the map) is only required if an explicit path from start to goal is requested via the

Dijkstra costmap

150
100
50
0

5 0 5 10 15 20 25 30 3 40 45
¥y

Figure 4: Resulting distance maps for the 4-connected (left) and 8-connected (right) Dijkstra’s
algorithm.

output argument path. If no path is requested, the algorithm will return the cost map costs,
encoding the geodesic distances for every cell to the goal vertex and the gradient direction
costGradientDirection.

Task: Your task is again to fill out the blanks indicated by the TODO symbol.

Validation: You can check the correctness of your implementation with the script
test/testDijkstra.m. The output should look like displayed in figure 4.

2.4 Exercise 6.3: Global Dynamic Window Approach

In this exercise, we will use the result of the global planner developed in Exercise 6.2 to enhance
the Dynamic Window Approach with global guidance. This will finally yield a motion planning
framework that enables autonomous navigation even in the presence of difficult obstacle
configurations (e.g.dead ends), while still taking into account the robot’s kinematic and
dynamic constraints. This is achieved by adapting the heading term in the score function of the
DWA: instead of looking at the orientation with respect to the straight line to the goal, we now
wish to maximize the alignment of the robot with the direction of the gradient of the geodesic
distance to the goal (the result of Exercise 6.2).

Task: To do so, add the missing code indicated by TODO (Ex.6.3) in the file
dynamicWindowApproach.m.

Validation: Test your implementation with the script test/testGlobalDwa.m. Similar to
Exercise 6.1, you can run a simple navigation simulation to observe the behavior of the planner:
test/testNavigationGlobalDwa.m

2.5 Exercise 6.4: Simulated Navigation in V-REP

Now that everything is put together and the correctness of your implementation is validated,
let’s use our planners to move a simulated robot in V-REP. To do so, start V-REP, load the scene
file scene/mooc_exercises.ttt, and press run.

After that, run the Matlab file vrep/vrepSimulation.m. The script will first get a global map
from the simulator and run Dijkstra’s algorithm to compute the global navigation function. On

success, it will subsequently call the Dynamic Window Approach to retrieve suitable motion
commands for the robot, that will lead the robot to the goal location.

Depending on the computational ressources of your computer, the implemented algorithms
might run too slowly in order to have a decent real-time control. In this case, consider using
the stepped simulation by setting the parameter parameters.vrepSteppedSimulation = true.
This will trigger a simulation step after each call to the Dynamic Window Approach algorithm.

References

Brock, O., & Khatib, O. 1999. High-speed Navigation Using the Global Dynamic Window
Approach. Pages 341-346 of: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA).

Fox, D., Burgard, W., & Thrun, S. 1997. The Dynamic Window Approach to Collision Avoidance.
IEEE Robotics & Automation Magazine, 4(1), 23-33.

Siegwart, R., Nourbakhsh, I., & Scaramuzza, D. 2011. Introduction to Autonomous Mobile Robots.
2nd edn. MIT Press.

	Introduction
	Dijkstra's Algorithm
	Dynamic Window Approach

	Matlab Implementation
	Introduction
	Exercise 6.1: Local Dynamic Window Approach
	Exercise 6.2: Dijkstra's Algorithm
	Exercise 6.3: Global Dynamic Window Approach
	Exercise 6.4: Simulated Navigation in V-REP

